Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity.
نویسندگان
چکیده
Post-translational modification of histones is critical for gene expression, mitosis, cell growth, apoptosis, and cancer development. Thus, finding protein kinases that are responsible for the phosphorylation of histones at critical sites is considered an important step in understanding the process of histone modification. The serine/threonine kinase Cot is a member of the mitogen-activated protein kinase (MAPK) kinase kinase family. We show here that Cot can phosphorylate histone H3 at Ser-10 in vivo and in vitro, and that the phosphorylation of histone H3 at Ser-10 is required for Cot-induced cell transformation. We found that activated Cot is recruited to the c-fos promoter resulting in increased activator protein-1 (AP-1) transactivation. The formation of the Cot-c-fos promoter complex was also apparent when histone H3 was phosphorylated at Ser-10. Furthermore, the use of dominant negative mutants of histone H3 revealed that Cot was required for phosphorylation of histone H3 at Ser-10 to induce neoplastic cell transformation. These results revealed an important function of Cot as a newly discovered histone H3 kinase. Moreover, the transforming ability of Cot results from the coordinated activation of histone H3, which ultimately converges on the regulation of the transcriptional activity of the c-fos promoter, followed by AP-1 transactivation activity.
منابع مشابه
Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing.
Histone H3 phosphorylation is a critical step that couples signal transduction pathways to gene regulation. To specifically assess the transcriptional regulatory functions of H3 phosphorylation, we developed an in vivo targeting approach and found that the H3 kinase MSK1 is a direct and potent transcriptional activator. Targeting of this H3 kinase to the endogenous c-fos promoter is sufficient ...
متن کاملCascade of distinct histone modifications during collagenase gene activation.
Gene activation in eukaryotes requires chromatin remodeling, in part via histone modifications. To study the events at the promoter of a mitogen-inducible gene, we examined the induction of expression of the collagenase gene. It has been established that the collagenase gene can be activated by c-Jun and c-Fos and that the transcriptional coactivator p300 is involved in the activation. As expec...
متن کاملShear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression.
Shear stress (SS), the tangential component of hemodynamic forces, modulates the expression of several genes in endothelial cells. However, no information is available about its effect on chromatin structure, which plays a key role in gene transcription. In this study, a link between SS and chromatin remodeling was established in human umbilical vein endothelial cells (HUVECs). HUVECs were expo...
متن کاملIKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation
Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a criti...
متن کاملFollicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells.
We examined the phosphorylation and acetylation of histone H3 in ovarian granulosa cells stimulated to differentiate by follicle-stimulating hormone (FSH). We found that protein kinase A (PKA) mediates H3 phosphorylation on serine 10, based on inhibition exclusively by PKA inhibitors. FSH-stimulated H3 phosphorylation in granulosa cells is not downstream of mitogen-activated protein kinase/extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2008